Python from go

Sevki

Sun Feb 9 19:09:28 CES 2014

Abstract

This article is briefly describes how to do cutesy stuff with python over
go.

go-python

There is a somewhat in-complete yet absolutely capable go package that lets
you do python from go, if you are so inclined to look at indentations . ..not that
there’s anything wrong with that.

go-python package is go bindings of 1ibpython over cgo. The reason I mention
cgo is that it means there is a fair bit of ¢ involved in making that package
therefore GAE won’t like it.

How well does it work?

Color highlighting on this blog is done by pygements, with the go to pygments
bindings I wrote called sandman. So if you know what you are doing you could
potentially get stuff done.

Downside

It’s a lot of work getting something to work, specially if you are not a python
expert like me, however it is fairly easier than doing the same thing in ¢ (and if
you are doing that you might as well join the python development team) thanks
to the work that has been done in the go-python.

libpython library forces you to implement most of the compiler work, you have
to check everything your self and the crashes are anything but graceful because
¢ doesn’t fuck around.

For instance if you are the king of person that likes his code to look like
psuedo code ...not that there’s anything wrong with that, you would import


https://github.com/sbinet/go-python
https://developers.google.com/appengine/
http://sevki.org/sandman

HtmlFormatter from the pygments.formatters library, and and call it to get
the lexer object.

from pygments.formatters import HtmlFormatter

In it’s go counter part (remember this is even more simplified then ¢) we would
use some thing like to do the same thing.

GetFormatterByName := getFunction("pygments.formatters", "HtmlFormatter")

However that would be cheating since there is a getFunction method that is
not shown,

func getFunction(module_name string, function_name string) *python.PyObject {

Module := python.PyImport_ImportModule(module_name)
if Module == nil {

log.Fatal("Failed to load the "+ module_name+" module")
X

var MethodDesired *python.PyObject

if Module.HasAttrString(function_name) == 1 {
MethodDesired = Module.GetAttrString(function_name)

}

if !MethodDesired.Check_Callable() {
log.Fatal(module_name+" is not callable")

}

return MethodDesired

}

You might think that’s not bad, python compiler does that too, which is exactly
the point, you are assuming the responsibilities of the compiler as a deverloper.
In the getFunction method, you import a module, check if it’s loaded, create a
PyObject, check if the function is present, load the function, check if the function
is actually a function (because functions and attributes seem to be PyObjects of
module) and finally if nothing catches fire you return the PyObject that is your
desired function. That’s the ammount of work it takes to do that one simple
thing, but you only do it once.

Now that there is something that can be called lets look at how to call it, if you
are the kinda person that thinks egg, spam and parrot are clever inside jokes,
not that there’s anything wrong with that, you might write something like this:

formatter = HtmlFormatter(linenos=True, encoding="utf-8")

And it’s go counterpart would be, actually I couldn’t come up with a counterpart
for that, linenos and encoding are members of that class. I'm sure there is
a way to call a function like that, but I just ignored those two, since linenos
defults to false anyways and came up with something like this



FormatterArgs := python.PyTuple_New(0)
Formatter:= GetFormatterByName.CallObject(FormatterArgs)

Which actually started causing problems, because pygments does only ascii
formatting if you don’t actually let it know you want utf-8 like a civilized human
being. So whenever I put in something that contained non-ascii it would crash
like hindenburg. So I figured out how to set the attributes of an object after init
which worked just fine.

GetFormatterByName := getFunction("pygments.formatters", "HtmlFormatter")
FormatterArgs := python.PyTuple_New(0)
Formatter:= GetFormatterByName.CallObject(FormatterArgs)

if Formatter == nil {
log.Fatal("Couldn’t get formatter")

}

if Formatter.HasAttrString("encoding") == 0 {
log.Fatal("Wrong formatter")

}

if Formatter.HasAttrString("linenos") == 0 {
log.Fatal("Wrong formatter")

}

Formatter.SetAttrString("encoding", python.PyString FromString("utf-8"))
Formatter.SetAttrString("linenos", python.PyBool_FromLong(lnos))

How about calling methods with python objects, well; if you are the kind of
person that likes being as far away from the metal as polka ...not that there’s
anything wrong with that, you might write something like:

result = highlight(code, lexer, formatter)
And it’s go counterpart would be a little different

HighlighterArgs := python.PyTuple_New(3)
python.PyTuple_SetItem(HighlighterArgs, O, python.PyString FromString(code))
python.PyTuple_SetItem(HighlighterArgs, 1, Lexer)
python.PyTuple_SetItem(HighlighterArgs, 2, Formatter)

highlighted := Highlighter.CallObject(HighlighterArgs)
if highlighted == nil {
log.Fatal("Couldn’t highlight")
¥
return python.PyString AsString(highlighted)

We would start of by making 3 tuples, adding the args to the tuple set and
calling the function with the tuple set.



Advice... yeah why not?

Python is a very well established language, and there are some amazing libraries
written in it that is really not that feasable to port at the moment due to the
ammount of time it would take. So something like go-python comes in handy,
but you when you are doing similar work besure you st. nick it all the way, check
everything twice, makesure things are loaded and available.

For instance, my pygments bindings package is designed to be used along side
goeylinguine which relies on github’s linguist data, so if you had updated the
linguist data after wwdc but you haven’t updated pygments and you think
I should go and write a blog post explaining how helloworld works in swift,
sandman (go-pygments thing) will assume pygments has an object which that
doesn’t, now unlike django, which will handle crashes gracefully, your go app
will crash like the greek economy. This is all because we are actually doing ¢
work, and even though we haven’t done any memory management, it doesn’t
mean it’s not there. There are some a bunch of defer’ed that handle free and
alloc calls in the go-python library.

libpython makes a lof of assumptions, cheif among them is that you have some
idea what you are doing, and you know a little about memory management,
go-pyhton abstracts some of this, and does most of the heavylifting for you and
it’s a great excersize if you are willing to learn about python’s internals, how it
works.


https://github.com/sevki/goeylinguine
https://github.com/github/linguist
http://blog.golang.org/defer-panic-and-recover

	go-python
	How well does it work?
	Downside
	Advice… yeah why not?


